Supermultiplets and relativistic problems: I. The free particle with arbitrary spin in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 305591
(http://iopscience.iop.org/0305-4470/30/15/039)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:50

Please note that terms and conditions apply.

Corrigenda

Supermultiplets and relativistic problems: I. The free particle with arbitrary spin in a magnetic field
M Moshinsky and Yu F Smirnov 1996 J. Phys. A: Math. Gen. 29 6027-42
The following table was omitted from the original article:
Submatrix $10 \times 10: n=3,\{h\}=3, k=0, \sigma+\tau=$ odd .

$\sigma \tau$	$\frac{3}{2} \frac{3}{2}$	$-\frac{13}{2}$	$\frac{11}{2}$	$\frac{1}{2} \frac{1}{2}$	$-\frac{3}{2} \frac{1}{2}$	$\frac{3}{2}-\frac{1}{2}$	$-\frac{1}{2}-\frac{1}{2}$	$-\frac{1}{2}-\frac{1}{2}$	$\frac{1}{2}-\frac{3}{2}$	$-\frac{3}{2}-\frac{3}{2}$
$\sigma^{\prime} \tau^{\prime}{ }^{22}$										0
$-\frac{1}{2} \frac{3}{2}$	0	3-3E	$4 \sqrt{3} b$	$-\frac{2 b}{\sqrt{3}}$	$-2 c$	0	0	0	0	0
$\frac{11}{2} \frac{1}{2}$	$2 a$	$-4 \sqrt{3} b$	$1-3 E$	0	0	$\frac{4 a}{\sqrt{3}}$	$-\frac{8 b}{3}$	$-\frac{2 \sqrt{2} b}{3}$	0	0
$\frac{1}{2} \frac{1}{2}$	$2 \sqrt{2} a$	$\frac{2 b}{\sqrt{3}}$	0	$1-3 E$	0	$-\frac{2}{\sqrt{2} a}$	$-\frac{2 \sqrt{2 b}}{3}$	$-\frac{10 b}{3}$	0	0
$-\frac{3}{2} \frac{1}{2}$	0	$2 c$	0	0	1-3E	0	$\frac{4 c}{\sqrt{3}}$	$-\frac{2 \sqrt{2} x}{\sqrt{3}}$	0	0
$\frac{3}{2}-\frac{1}{2}$	0	0	$-\frac{4 a}{\sqrt{3}}$	$\frac{2 \sqrt{2} a}{\sqrt{3}}$	0	$-1-3 E$	0	0	-2a	0
$-\frac{1}{2}-\frac{1}{2}$	0	0	$\frac{8 b}{3}$	$\frac{2 \sqrt{2 b}}{3}$	$-\frac{4 c}{\sqrt{3}}$	0	$-1-3 E$	0	$\frac{4 b}{\sqrt{3}}$	$-2 c$
$-\frac{1}{2}-\frac{1}{2}$	0	0	$\frac{2 \sqrt{2} b}{3}$	$\frac{10 b}{3}$	$\frac{2 \sqrt{2 c}}{\sqrt{3}}$	0	0	$-1-3 E$	$-\frac{2 \sqrt{2} b}{3}$	$-2 \sqrt{2} c$
$\frac{1}{2}-\frac{3}{2}$	0	0	0	0	,	$2 a$	$-\frac{4 b}{\sqrt{3}}$	$\frac{2 \sqrt{2} b}{\sqrt{3}}$	$-3-3 E$	0
$-\frac{3}{2}-\frac{3}{2}$	0	0	0	0	0	0	2 c	$2 \sqrt{2} c$	0	$-3-3 E$

Here

$$
\begin{aligned}
& a \quad=i \omega \sqrt{\mu-\frac{1}{2}} \\
& b \quad=i \omega \sqrt{\mu+\frac{1}{2}} \\
& c \quad=i \omega \sqrt{\mu+\frac{3}{2}} \\
& c \quad \\
& \sigma(\tau)= \pm \frac{1}{2} \quad \text { corresponds to } S(T)=\frac{1}{2} \\
& \sigma(\tau)= \pm \frac{1}{2}, \pm \frac{3}{2} \quad \quad \text { corresponds to } S(T)=\frac{3}{2} .
\end{aligned}
$$

The analytic inversion of any finite symmetric tridiagonal matrix
H A Yamani and M S Abdelmonem 1997 J. Phys. A: Math. Gen. 30 2889-93
Equation (12) was incorrectly printed in this comment. The correct version is:

$$
\left(\begin{array}{cc}
\left(H_{P P}-z I_{P P}\right) & H_{P Q} \\
H_{Q P} & \left(H_{Q Q}-z I_{Q Q}\right)
\end{array}\right)\left(\begin{array}{cc}
G_{P P} & G_{P Q} \\
G_{Q P} & G_{Q Q}
\end{array}\right)=\left(\begin{array}{cc}
I_{P P} & 0 \\
0 & I_{Q Q}
\end{array}\right) .
$$

